Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1379231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638139

RESUMO

Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome transcriptome database, which included all major crustacean taxa, showed that RTK sequences segregated into receptor clades representing InsR (72 sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR (PVR; 235 sequences). These four receptor families were distinguished by the domain organization of the extracellular N-terminal region and motif sequences in the protein kinase catalytic domain in the C-terminus or the ligand-binding domain in the N-terminus. EGFR1 formed a single monophyletic group, while the other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3, and PVR1-2. In decapods, isoforms within the RTK subclades were common. InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat, furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a cadherin tandem repeat domain. PVRs had between two and five immunoglobulin-like domains. A classification nomenclature of the four RTK classes, based on phylogenetic analysis and multiple sequence alignments, is proposed.


Assuntos
Furina , Insulina , Furina/genética , Filogenia , Insulina/genética , Transcriptoma , Cisteína , Leucina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores ErbB/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Tirosina
2.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607027

RESUMO

The pro-protein convertase FURIN (PCSK3) is implicated in a wide range of normal and pathological biological processes such as infectious diseases, cancer and cardiovascular diseases. Previously, we performed a systemic inhibition of FURIN in a mouse model of atherosclerosis and demonstrated significant plaque reduction and alterations in macrophage function. To understand the cellular mechanisms affected by FURIN inhibition in myeloid cells, we optimized a CRISPR-mediated gene deletion protocol for successfully deriving hemizygous (HZ) and nullizygous (NZ) FURIN knockout clones in U937 monocytic cells using lipotransfection-based procedures and a dual guide RNA delivery strategy. We observed differences in monocyte and macrophage functions involving phagocytosis, lipid accumulation, cell migration, inflammatory gene expression, cytokine release patterns, secreted proteomics (cytokines) and whole-genome transcriptomics between wild-type, HZ and NZ FURIN clones. These studies provide a mechanistic basis on the possible roles of myeloid cell FURIN in cardiovascular disorders.


Assuntos
Furina , Edição de Genes , Monócitos , Animais , Humanos , Camundongos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citocinas/genética , Furina/genética , Furina/metabolismo , Monócitos/metabolismo , Multiômica , RNA Guia de Sistemas CRISPR-Cas , Células U937
3.
Sci Rep ; 14(1): 7822, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570613

RESUMO

SARS CoV-2, the causative agent for the ongoing COVID-19 pandemic, it enters the host cell by activating the ACE2 receptor with the help of two proteasesi.e., Furin and TMPRSS2. Therefore, variations in these genes may account for differential susceptibility and severity between populations. Previous studies have shown that the role of ACE2 and TMPRSS2 gene variants in understanding COVID-19 susceptibility among Indian populations. Nevertheless, a knowledge gap exists concerning the COVID-19 susceptibility of Furin gene variants among diverse South Asian ethnic groups. Investigating the role of Furin gene variants and their global phylogeographic structure is essential to comprehensively understanding COVID-19 susceptibility in these populations. We have used 450 samples from diverse Indian states and performed linear regression to analyse the Furin gene variant's with COVID-19 Case Fatality Rate (CFR) that could be epidemiologically associated with disease severity outcomes. Associated genetic variants were further evaluated for their expression and regulatory potential through various Insilco analyses. Additionally, we examined the Furin gene using next-generation sequencing (NGS) data from 393 diverse global samples, with a particular emphasis on South Asia, to investigate its Phylogeographic structure among diverse world populations. We found a significant positive association for the SNP rs1981458 with COVID-19 CFR (p < 0.05) among diverse Indian populations at different timelines of the first and second waves. Further, QTL and other regulatory analyses showed various significant associations for positive regulatory roles of rs1981458 and Furin gene, mainly in Immune cells and virus infection process, highlighting their role in host immunity and viral assembly and processing. The Furin protein-protein interaction suggested that COVID-19 may contribute to Pulmonary arterial hypertension via a typical inflammation mechanism. The phylogeographic architecture of the Furin gene demonstrated a closer genetic affinity of South Asia with West Eurasian populations. Therefore, it is worth proposing that for the Furin gene, the COVID-19 susceptibility of South Asians will be more similar to the West Eurasian population. Our previous studies on the ACE2 and TMPRSS2 genes showed genetic affinity of South Asian with East Eurasians and West Eurasians, respectively. Therefore, with the collective information from these three important genes (ACE2, TMPRSS2 and Furin) we modelled COVID-19 susceptibilityof South Asia in between these two major ancestries with an inclination towards West Eurasia. In conclusion, this study, for the first time, concluded the role of rs1981458 in COVID-19 severity among the Indian population and outlined its regulatory potential.This study also highlights that the genetic structure for COVID-19 susceptibilityof South Asia is distinct, however, inclined to the West Eurasian population. We believe this insight may be utilised as a genetic biomarker to identify vulnerable populations, which might be directly relevant for developing policies and allocating resources more effectively during an epidemic.


Assuntos
COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/epidemiologia , COVID-19/genética , Furina/genética , Pandemias , Polimorfismo Genético
4.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301907

RESUMO

Dengue virus (DENV) envelope protein plays crucial role in virus entry and maturation of virus during infection. Maturation of DENV occurs in the trans Golgi network at slightly acidic pH which is close to pKa of histidine. When exposed to the acidic environment of the late secretory pathway, dengue virus particles go through a significant conformational change, whereby interactions of structural proteins envelope (E) and prM proteins are reorganised and enable furin protease to cleave prM resulting in mature virus. In order to study the role of histidine of E protein in DENV maturation, we mutated 7 conserved histidine residues of envelope protein and assessed the percent of budding using viral like particle (VLP) system. Histidine mutants; H144A, H244A, H261A and H282A severely disrupted VLP formation without any significant change in expression in cell and its oligomerization ability. Treatment with acidotropic amine reversed the defect for all 4 mutants suggesting that these histidines could be involved in maturation and release. Over expression of capsid protein slightly enhanced VLP release of H244A and H261A. Similarly, furin over expression increased VLP release of these mutants. Co-immunoprecipitation studies revealed that prM and E interaction is lost for H244A, H261A and H282A mutants at acidic pH but not at neutral pH indicating that they could be involved in histidine switch during maturation at acidic pH. Detailed analysis of the mutants could provide novel insights on the interplay of envelop protein during maturation and aid in target for drug development.


Assuntos
Dengue , Proteínas do Envelope Viral , Humanos , Proteínas do Envelope Viral/genética , Furina/genética , Histidina/genética , Mutação
5.
Virology ; 592: 109997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38324940

RESUMO

Here we investigated the virulence properties of a unique cell-adapted SARS-CoV-2 mutant showing a ten-amino acid deletion encompassing the furin cleavage site of the spike protein (Δ680SPRAARSVAS689; Δ680-689-B.1) in comparison to its parental strain (wt-B.1) and two Delta variants (AY.122 and AY.21) of concern. After intranasal inoculation, transgenic K18-hACE2 mice were monitored for 14 days for weight change, lethality, and clinical score; oral swabs were daily collected and tested for the presence of N protein subgenomic RNA. At 3 and 7 dpi mice were also sacrificed and organs collected for molecular, histopathological, and immune response profile investigations. The Δ680-689-B.1-infected mice exhibited reduced shedding, lower virulence at the lung level, and milder pulmonary lesions. In the lung, infection with Δ680-689-B.1 was associated with a significant lower expression of some cytokines at 3 dpi (IL-4, IL-27, and IL-28) and 7 dpi (IL-4, IL-27, IL-28, IFN-γ and IL-1α).


Assuntos
COVID-19 , Interleucina-27 , Melfalan , gama-Globulinas , Camundongos , Animais , Furina/genética , Interleucina-4 , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Virulência , Camundongos Transgênicos , Modelos Animais de Doenças
6.
Cancer Rep (Hoboken) ; 7(1): e1920, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018319

RESUMO

BACKGROUND: Endometrial adenocarcinoma (EAC) is a malignant tumor of the endometrium. EAC is the most common female malignancy following the menopause period. About 40% of patients with EAC are linked with obesity and interrelated with hypertension, diabetes mellitus, and high circulating estrogen levels. Proprotein convertase (PC) furin was involved in the progression of EAC. RECENT FINDINGS: Furin is a protease enzyme belonging to the subtilisin PC family called PC subtilisin/kexin type 3 that converts precursor proteins to biologically active forms and products. Aberrant activation of furin promotes abnormal cell proliferation and the development of cancer. Furin promotes angiogenesis, malignant cell proliferation, and tissue invasion by malignant cells through its pro-metastatic and oncogenic activities. Furin activity is correlated with the malignant proliferation of EAC. Higher expression of furin may increase the development of EAC through overexpression of pro-renin receptors and disintegrin and metalloprotease 17 (ADAM17). As well, inflammatory signaling in EAC promotes the expression of furin with further propagation of malignant transformation. CONCLUSION: Furin is associated with the development and progression of EAC through the induction of proliferation, invasion, and metastasis of malignant cells of EAC. Furin induces ontogenesis in EAC through activation expression of ADAM17, pro-renin receptor, CD109, and TGF-ß. As well, EAC-mediated inflammation promotes the expression of furin with further propagation of neoplastic growth and invasion.


Assuntos
Adenocarcinoma , Furina , Humanos , Feminino , Furina/genética , Furina/metabolismo , Pró-Proteína Convertases/metabolismo , Subtilisinas/metabolismo , Transdução de Sinais
7.
J Biochem Mol Toxicol ; 38(1): e23527, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37681557

RESUMO

Diminazene aceturate (DIZE) is an FDA-listed small molecule known for the treatment of African sleeping sickness. In vivo studies showed that DIZE may be beneficial for a range of human ailments. However, there is very limited information on the effects of DIZE on human cancer cells. The current study aimed to investigate the cytotoxic responses of DIZE, using the human carcinoma Hela cell line. WST-1 cell proliferation assay showed that DIZE inhibited the viability of Hela cells in a dose-dependent manner and the observed response was associated with the downregulation of Ki67 and PCNA cell proliferation markers. DIZE-treated cells stained with acridine orange-ethidium and JC-10 dye revealed cell death and loss of mitochondrial membrane potential (Ψm), compared with DMSO (vehicle) control, respectively. Cellular immunofluorescence staining of DIZE-treated cells showed upregulation of caspase 3 activities. DIZE-treated cells showed downregulation of mRNA for G1/S genes CCNA2 and CDC25A, S-phase genes MCM3 and PLK4, and G2/S phase transition/mitosis genes Aurka and PLK1. These effects were associated with decreased mRNA expression of Furin, c-Myc, and FOXM1 oncogenes. These results suggested that DIZE may be considered for its effects on other cancer types. To the best of our knowledge, this is the first study to evaluate the effect of DIZE on human cervical cancer cells.


Assuntos
Diminazena/análogos & derivados , Peptidil Dipeptidase A , Neoplasias do Colo do Útero , Feminino , Humanos , Peptidil Dipeptidase A/metabolismo , Células HeLa , Regulação para Baixo , Neoplasias do Colo do Útero/genética , Furina/genética , Furina/metabolismo , Oncogenes , Ciclo Celular , RNA Mensageiro , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
8.
Virol Sin ; 38(6): 868-876, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37967719

RESUMO

Coronavirus (CoV) spillover originating from game animals, particularly pangolins, is currently a significant concern. Meanwhile, vigilance is urgently needed for coronaviruses carried by bats, which are known as natural reservoirs of many coronaviruses. In this study, we collected 729 anal swabs of 20 different bat species from nine locations in Yunnan and Guangdong provinces, southern China, in 2016 and 2017, and described the molecular characteristics and genetic diversity of alphacoronaviruses (αCoVs) and betacoronaviruses (ßCoVs) found in these bats. Using RT-PCR, we identified 58 (8.0%) bat CoVs in nine bat species from six locations. Furthermore, using the Illumina platform, we obtained two representative full-length genomes of the bat CoVs, namely TyRo-CoV-162275 and TyRo-CoV-162269. Sequence analysis showed that TyRo-CoV-162275 shared the highest identity with Malayan pangolin (Manis javanica) HKU4-related coronaviruses (MjHKU4r-CoVs) from Guangxi Province, whereas TyRo-CoV-162269 was closely related to HKU33-CoV discovered in a greater bamboo bat (Tylonycteris robustula) from Guizhou Province. Notably, TyRo-CoV-162275 has a putative furin protease cleavage site in its S protein and is likely to utilize human dipeptidyl peptidase-4 (hDPP4) as a cell-entry receptor, similar to MERS-CoV. To the best of our knowledge, this is the first report of a bat HKU4r-CoV strain containing a furin protease cleavage site. These findings expand our understanding of coronavirus geographic and host distributions.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Animais , Pangolins , Furina/genética , Filogenia , China , Infecções por Coronavirus/veterinária
9.
Biomolecules ; 13(11)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002338

RESUMO

Despite advances in treatment options, such as corticosteroid administration and less invasive respiratory support, bronchopulmonary dysplasia (BPD) remains an important prognostic factor in preterm infants. We previously reported that furin regulates changes in lung smooth muscle cell phenotypes, suggesting that it plays a critical role in BPD pathogenesis. Therefore, in this study, we aimed to evaluate whether it regulates the alveolarization of immature lungs through activating alveolarization-driving proteins. We first examined furin expression levels, and its functions, using an established hyperoxia-induced BPD mouse model. Thereafter, we treated mice pups, as well as primary myofibroblast cell cultures, with furin inhibitors. Finally, we administered the hyperoxia-exposed mice pups with recombinant furin. Immunofluorescence revealed the co-expression of furin with alpha-smooth muscle actin. Hyperoxia exposure for 10 d decreased alveolar formation, as well as the expression of furin and its target, IGF-1R. Hexa-D-arginine administration also significantly inhibited alveolar formation. Another furin inhibitor, decanoyl-RVKR-chloromethylketone, accumulated pro-IGF-1R, and decreased IGF-1R phosphorylation in myofibroblast primary cultures. Finally, recombinant furin treatment significantly improved alveolarization in hyperoxia-exposed mice pups. Furin regulates alveolarization in immature lungs. Therefore, this study provides novel insights regarding the involvement of furin in BPD pathogenesis, and highlights a potential treatment target for ameliorating the impact of BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Pneumonia , Animais , Humanos , Recém-Nascido , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Furina/genética , Furina/metabolismo , Hiperóxia/complicações , Hiperóxia/metabolismo , Recém-Nascido Prematuro , Pulmão/metabolismo , Lesão Pulmonar/patologia , Pneumonia/metabolismo
10.
BMC Genom Data ; 24(1): 71, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990144

RESUMO

BACKGROUND: The key evolutionary step leading to the pandemic virus was the acquisition of the PRRA furin cleavage motif at the spike glycoprotein S1/S2 junction by a progenitor of SARS-CoV-2. Two of its features draw attention: (i) it is absent in other known lineage B beta-coronaviruses, including the newly discovered coronaviruses in bats from Laos and Vietnam, which are the closest known relatives of the covid virus; and, (ii) it introduced the pair of arginine codons (CGG-CGG), whose usage is extremely rare in coronaviruses. With an occurrence rate of only 3%, the arginine CGG codon is considered a minority in SARS CoV-2. On the other hand, Laos and Vietnam bat coronaviruses contain receptor-binding domains that are almost identical to that of SARS-CoV-2 and can therefore infect human cells despite the absence of the furin cleavage motif. RESULTS: Based on these data, the aim of this work is to provide a detailed sequence analysis between the SARS-CoV-2 S gene insert encoding PRRA and the human mRNA transcripts. The result showed a 100% match to several mRNA transcripts. The set of human genes whose mRNAs match this S gene insert are ubiquitous and highly expressed, e.g., the ATPase F1 (ATP5F1) and the ubiquitin specific peptidase 21 (USP21) genes; or specific genes of target organs or tissues of the SARS-CoV-2 infection (e.g., MEMO1, SALL3, TRIM17, CWC15, CCDC187, FAM71E2, GAB4, PRDM13). Results suggest that a recombination between the genome of a SARS-CoV-2 progenitor and human mRNA transcripts could be the origin of the S gene 12-nucleotide insert encoding the S protein PRRA motif. CONCLUSIONS: The hypothesis of probable human origin of the SARS-CoV-2 polybasic furin cleavage motif is supported by: (i) the nature of human genes whose mRNA sequence 100% match the S gene insert; (ii) the synonymous base substitution in the arginine codons (CGG-CGG); and (iii) further spike glycoprotein PRRA-like insertions suggesting that the acquisition of PRRA may not have been a single recombination event.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Furina/genética , Furina/química , Furina/metabolismo , Códon , RNA Mensageiro/genética , Glicoproteínas , Arginina , Ubiquitina Tiolesterase , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Peptídeos e Proteínas de Sinalização Intracelular
11.
Int Ophthalmol ; 43(12): 5055-5062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847479

RESUMO

PURPOSE: To investigate the presence of ACE2, TMPRSS2 and Furin, i.e., a key player in the ocular infection with SARS-COV-2, in surgically obtained human retinal tissue samples from SARS-CoV-2-negative patients, using gene expression analysis. METHODS: The mechanisms and entry paths of ocular infections have been ill-defined so far. To better understand the possible entry routes, we used surgically explanted retinal tissue from nine patients that were not infected with SARS-CoV-2 and analyzed the message expression of the three key molecules that confer viral entry into cells using polymerase chain reaction. RESULTS: The median age of the patients (n = 9) included in the study was 52 years (IQR 48, 55). Eight patients underwent surgery for rhegmatogenous retinal detachment and one patient for tractional retinal detachment. Gene expression for the proteins studied was detected in all nine patients. The results of analysis by Livak's method (2001) demonstrated a median TMPRSS2 gene expression value of 20.9 (IQR 11.7, 33.7), a median ACE2 gene expression value of 2.09 (IQR 1.14, 2.79) and a median Furin gene expression value of 8.33 (IQR 5.90, 11.8). CONCLUSION: In conclusion, TMPRSS2, Furin and ACE2 are expressed in the retina and may contribute to the retinal involvement in COVID-19 patients. Expression may vary among individuals, which may explain why some patients may be more prone to retinal involvement during SARS-CoV-2 infection COVID-19 patients than others. Variability in the expression of TMPRSS2, Furin and ACE2 proteins themselves may also explain the presence or development of retinal symptoms of varying severity.


Assuntos
COVID-19 , Descolamento Retiniano , Humanos , SARS-CoV-2 , Furina/genética , Furina/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Biópsia , Retina/metabolismo
12.
Cells ; 12(13)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443715

RESUMO

Genome-wide association studies have revealed an association between the genetic variant rs17514846 in the FURIN gene and coronary artery disease. We investigated the mechanism through which rs17514846 modulates FURIN expression. An analysis of isogenic monocytic cell lines showed that the cells of the rs17514846 A/A genotype expressed higher levels of FURIN than cells of the C/C genotype. Pyrosequencing showed that the cytosine (in a CpG motif) at the rs17514846 position on the C allele was methylated. Treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine increased FURIN expression. An electrophoretic mobility super-shift assay with a probe corresponding to the DNA sequence at and around the rs17514846 position of the C allele detected DNA-protein complex bands that were altered by an anti-MeCP2 antibody. A chromatin immunoprecipitation assay with the anti-MeCP2 antibody showed an enrichment of the DNA sequence containing the rs17514846 site. siRNA-mediated knockdown of MeCP2 caused an increase in FURIN expression. Furthermore, MeCP2 knockdown increased monocyte migration and proliferation, and this effect was diminished by a FURIN inhibitor. The results of our study suggest that DNA methylation inhibits FURIN expression and that the coronary artery disease-predisposing variant rs17514846 modulates FURIN expression and monocyte migration via an allele-specific effect on DNA methylation.


Assuntos
Doença da Artéria Coronariana , Epigênese Genética , Humanos , Alelos , Doença da Artéria Coronariana/genética , Furina/genética , Estudo de Associação Genômica Ampla
13.
Virol Sin ; 38(3): 344-350, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37141989

RESUMO

The current pandemic of COVID-19 caused by a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), threatens human health around the world. Of particular concern is that bats are recognized as one of the most potential natural hosts of SARS-CoV-2; however, coronavirus ecology in bats is still nascent. Here, we performed a degenerate primer screening and next-generation sequencing analysis of 112 bats, collected from Hainan Province, China. Three coronaviruses, namely bat betacoronavirus (Bat CoV) CD35, Bat CoV CD36 and bat alphacoronavirus CD30 were identified. Bat CoV CD35 genome had 99.5% identity with Bat CoV CD36, both sharing the highest nucleotide identity with Bat Hp-betacoronavirus Zhejiang2013 (71.4%), followed by SARS-CoV-2 (54.0%). Phylogenetic analysis indicated that Bat CoV CD35 formed a distinct clade, and together with Bat Hp-betacoronavirus Zhejiang2013, was basal to the lineage of SARS-CoV-1 and SARS-CoV-2. Notably, Bat CoV CD35 harbored a canonical furin-like S1/S2 cleavage site that resembles the corresponding sites of SARS-CoV-2. The furin cleavage sites between CD35 and CD36 are identical. In addition, the receptor-binding domain of Bat CoV CD35 showed a highly similar structure to that of SARS-CoV-1 and SARS-CoV-2, especially in one binding loop. In conclusion, this study deepens our understanding of the diversity of coronaviruses and provides clues about the natural origin of the furin cleavage site of SARS-CoV-2.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Filogenia , Furina/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
Genes (Basel) ; 14(5)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37239341

RESUMO

BACKGROUND: The PCSK3 gene encodes for the protease enzyme Furin, which promotes proteolytic maturation of important regulators of the immune response, and also enhances the secretion of interferon-γ (IFN). Several studies have suggested its possible involvement in the pathogenesis of chronic inflammatory diseases. METHODS: We investigated the PCSK3 gene expression level in peripheral blood mononuclear cells isolated from Sjögren's Syndrome (SS) patients and healthy controls and we evaluated a possible correlation with IFN-γ gene expression. Moreover, we also explored the variability of two PCSK3 genetic polymorphisms (rs4932178 and rs4702) to evaluate a possible association between these polymorphisms and the expression levels of this gene. RESULTS: We observed, by RT-qPCR, that the PCSK3 expression level was significantly higher in SS patients compared to the controls (p = 0.028), and we confirmed a positive correlation between PCSK3 and IFN-γ expression levels (p < 0.001). Moreover, we reported that the variant homozygous genotype of rs4932178 SNP is associated with a higher expression of the PCSK3 gene (p = 0.038) and with the SS susceptibility (p = 0.016). CONCLUSIONS: Our data suggest that Furin could play a role in SS development, also promoting IFN-γ secretion.


Assuntos
Furina , Síndrome de Sjogren , Humanos , Furina/genética , Expressão Gênica , Interferon gama/genética , Interferon gama/metabolismo , Leucócitos Mononucleares/metabolismo , Regiões Promotoras Genéticas
15.
J Virol ; 97(5): e0009323, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37097176

RESUMO

Adeno-associated viruses (AAVs) are small, helper-dependent, single-stranded DNA viruses that exploit a broad spectrum of host factors for cell entry. During the course of infection, several AAV serotypes have been shown to transit through the trans-Golgi network within the host cell. In the current study, we investigated whether the Golgi-localized, calcium-dependent protease furin influences AAV transduction. While CRISPR/Cas9-mediated knockout (KO) of the Furin gene minimally affected the transduction efficiency of most recombinant AAV serotypes tested, we observed a striking increase in transgene expression (~2 log orders) for the African green monkey isolate AAV4. Interrogation of different steps in the infectious pathway revealed that AAV4 binding, uptake, and transcript levels are increased in furin KO cells, but postentry steps such as uncoating or nuclear entry remain unaffected. Recombinant furin does not cleave AAV4 capsid proteins nor alter cellular expression levels of essential factors such as AAVR or GPR108. Interestingly, fluorescent lectin screening revealed a marked increase in 2,3-O-linked sialoglycan staining on the surface and perinuclear space of furin KO cells. The essential nature of increased sialoglycan expression in furin KO cells in enhancing AAV4 transduction was further corroborated by (i) increased transduction by the closely related isolates AAVrh.32.33 and sea lion AAV and (ii) selective blockade or removal of cellular 2,3-O-linked sialoglycans by specific lectins or neuraminidase, respectively. Based on the overall findings, we postulate that furin likely plays a key role in regulating expression of cellular sialoglycans, which in turn can influence permissivity to AAVs and possibly other viruses. IMPORTANCE Adeno-associated viruses (AAVs) are a proven recombinant vector platform for gene therapy and have demonstrated success in the clinic. Continuing to improve our knowledge of AAV-host cell interactions is critical for improving the safety and efficacy. The current study dissects the interplay between furin, a common intracellular protease, and certain cell surface sialoglycans that serve as viral attachment factors for cell entry. Based on the findings, we postulate that differential expression of furin in host cells and tissues is likely to influence gene expression by certain recombinant AAV serotypes.


Assuntos
Dependovirus , Internalização do Vírus , Animais , Chlorocebus aethiops , Dependovirus/metabolismo , Furina/genética , Furina/metabolismo , Vetores Genéticos , Proteínas do Capsídeo/genética , Transdução Genética
16.
J Thromb Haemost ; 21(8): 2101-2113, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37080538

RESUMO

BACKGROUND: Variants of human factor VIII (hFVIII) have been developed to further understand the structure and function of hFVIII and improve gene-based therapeutics. We have previously characterized several hFVIII variants of the furin cleavage site (1645-1648) with improved secretion. We have also identified a second cleavage site in the acidic region 3 (a3) (1657-1658) that becomes the primary hFVIII intracellular cleavage position in the absence of the furin site. We tested a hypothesis that modification of this site may confer additional functional advantages to hFVIII. OBJECTIVES: The aim of this study was to conduct the biochemical and functional characterization of hFVIII variants of the furin cleavage site, the a3 cleavage site, or in combination, both in vitro and in vivo after AAV mediated gene therapy. METHODS: Recombinant hFVIII variants of the furin cleavage site (hFVIII-Δ3), the a3 cleavage site (hFVIII-S1657P/D1658E [SP/DE]), or in combination (hFVIII-Δ3-SP/DE) were purified and characterized in vitro and in vivo. RESULTS: Recombinant hFVIII-Δ3, hFVIII-SP/DE, and hFVIII-Δ3-SP/DE variants all had comparable specific activity to B-domain deleted (BDD) hFVIII. Hemophilia A mice tolerant to hFVIII did not develop immune responses to hFVIII after protein challenge with these variants or after adeno-associated virus (AAV) delivery. Following AAV delivery, hFVIII-Δ3-SP/DE resulted in expression levels that were 2- to 5-fold higher than those with hFVIII-BDD in hemophilia A mice. CONCLUSION: The novel hFVIII-Δ3-SP/DE variant of the furin and a3 cleavage sites significantly improved secretion compared with hFVIII-BDD. This key feature of the Δ3-SP/DE variant provides a unique strategy that can be combined with other approaches to further improve factor VIII expression to achieve superior efficacy in AAV-based gene therapy for hemophilia A.


Assuntos
Fator VIII , Hemofilia A , Humanos , Animais , Camundongos , Fator VIII/metabolismo , Hemofilia A/genética , Hemofilia A/terapia , Furina/genética , Domínios Proteicos , Terapia Genética/métodos , Vetores Genéticos
17.
Discov Med ; 35(175): 144-156, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105924

RESUMO

BACKGROUND: Furin is a calcium-dependent serine protease found in almost all mammals. It plays an important role in embryogenesis, tissue homeostasis, tumors pathogenesis, viral infectious diseases, and neurodegenerative diseases. However, whether furin directly regulates melanin synthesis and transport has rarely been evaluated yet. The present study aimed to investigate furin potential function and mechanisms in melanogenesis. METHODS: Short hairpin RNAs targeting furin gene (sh-furin RNAs) were used to inhibit furin gene expression in human melanoma cell line MNT-1 cells. Then, intracellular melanin content was measured using a sodium hydroxide method. Extracellular melanin content was measured determining cell culture medium absorbance at 450 nm. Levodopa (L-DOPA) oxidation rate was measured to assess the tyrosinase activity. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB) were performed to measure melanogenesis-related genes and Notch pathway-related genes expression levels. Human primary melanocytes (MCs) were extracted from foreskin tissues and were stimulated with a furin inhibitor. Then, the extracellular and intracellular melanin content, tyrosinase activity and molecules related to melanogenesis and the Notch pathway expression were measured in MCs with or without a furin inhibitor. Additionally, morpholino technology was used to inhibit furin in zebrafish. Zebrafish pigmentary phenotypes in the control group and furin inhibition group were observed with a stereo microscope. Then, MCs number in the tail and head of the zebrafish were counted using Image J software (version 1.53t, National Institute of Health, Bethesda, MD, USA). Meanwhile, melanin content, tyrosinase activity, and molecules related to melanogenesis and the Notch pathway expression levels were measured. Subsequently, valproic acid (VPA), a Notch pathway agonist, was used in MNT-1 melanoma cells treated with or without sh-furin lentiviral vectors for rescue experiments. RESULTS: Furin inhibition enhanced intracellular and extracellular melanin content, and cellular tyrosinase activity in MNT-1 cells and MCs. Additionally, furin inhibition increased melanin synthesis-associated and transport-associated proteins expression levels while inhibiting Notch pathway-relevant proteins. After using VPA to activate the Notch pathway in MNT-1 cells transfected with a sh-furin RNA, the biological effects resulting from furin knockdown were reversed. In addition, the results of in vivo experiments using morpholino to knock down furin gene in zebrafish further confirmed that furin knockdown regulated melanogenesis and impaired the Notch pathway. CONCLUSIONS: This study clarified that furin affected the synthesis and transport of melanin via Notch pathway. Notch pathway may be a potential therapeutic target for pigmented skin diseases.


Assuntos
Melaninas , Melanoma Experimental , Animais , Humanos , Peixe-Zebra/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Furina/genética , Furina/metabolismo , Pró-Proteína Convertases/metabolismo , Morfolinos , Melanoma Experimental/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Mamíferos/metabolismo
18.
Eur J Immunol ; 53(6): e2250246, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015057

RESUMO

The proprotein convertase subtilisin/kexins (PCSKs) regulate biological actions by cleaving immature substrate proteins. The archetype PCSK, FURIN, promotes the pathogenicity of viruses by proteolytically processing viral proteins. FURIN has also important regulatory functions in both innate and adaptive immune responses but its role in the CD8+ CTLs remains enigmatic. We used a T-cell-specific FURIN deletion in vivo to demonstrate that FURIN promotes host response against the CTL-dependent lymphocytic choriomeningitis virus by virtue of restricting viral burden and augmenting interferon gamma (IFNG) production. We also characterized Furin KO CD8+ T cells ex vivo, including after their activation with FURIN regulating cytokines IL12 or TGFB1. Furin KO CD8+ T cells show an inherently activated phenotype characterized by the upregulation of effector genes and increased frequencies of CD44+ , TNF+ , and IFNG+ cells. In the activated CTLs, FURIN regulates the productions of IL2, TNF, and GZMB and the genes associated with the TGFBR-signaling pathway. FURIN also controls the expression of Eomes, Foxo1, and Bcl6 and the levels of ITGAE and CD62L, which implies a role in the development of CTL memory. Collectively, our data suggest that the T-cell expressed FURIN is important for host responses in viral infections, CTL homeostasis/activation, and memory development.


Assuntos
Coriomeningite Linfocítica , Linfócitos T Citotóxicos , Camundongos , Animais , Linfócitos T CD8-Positivos , Furina/genética , Camundongos Endogâmicos C57BL , Vírus da Coriomeningite Linfocítica , Memória Imunológica
19.
Sci Rep ; 13(1): 4470, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934166

RESUMO

The FBN1 gene encodes profibrillin protein that is cleaved by the enzyme furin to release fibrillin-1 and a glucogenic hormone, asprosin. Asprosin is implicated in diverse metabolic functions as well as pathological conditions in mammals. However, till date, there are no studies on asprosin in any non-mammalian vertebrate. In this study, we have retrieved the spotted snakehead Channa punctata fbn1 gene (ss fbn1) from the testicular transcriptome data and validated it. The transcript is predicted to encode 2817 amino acid long putative profibrillin protein. Amino acid sequence alignment of deduced ss profibrillin with human profibrillin revealed that the furin cleavage site in profibrillin is well conserved in C. punctata. Further, differential expression of ss fbn1 was observed in various tissues with the highest expression in gonads. Prominent expression of furin was also observed in the gonads suggesting the possibility of proteolytic cleavage of profibrillin protein and secretion of asprosin in C. punctata. In addition, the C-terminal of the fbn1 gene of C. punctata that codes for asprosin protein has been cloned. Using in silico approach, physicochemical properties of the putative ss asprosin were characterized and post-translational changes were predicted. The putative ss asprosin protein sequence is predicted to consist of 142 amino acid residues, with conserved glycosylation sites. Further, the 3D model of ss asprosin was predicted followed by MD (molecular dynamics) simulation for energy minimization. Thus, the current study, for the first time in non-mammalian vertebrates, predicts and characterizes the novel protein asprosin using in silico approach.


Assuntos
Proteínas de Peixes , Furina , Proteínas dos Microfilamentos , Animais , Humanos , Sequência de Aminoácidos , Clonagem Molecular , Fibrilina-1/genética , Furina/genética , Proteínas dos Microfilamentos/genética , Peixes/genética , Proteínas de Peixes/genética
20.
Arch Med Res ; 54(3): 223-230, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914430

RESUMO

BACKGROUND: COVID-19, the 21st century pandemic disease caused by SARS-CoV-2, has shown a wide clinical spectrum ranging from asymptomatic to deadly serious pneumonia. OBJECTIVE: In our study, the relationship between the pathogenesis and clinical severity of COVID-19 and vitamin D, ACE2, Furin and TMPRSS2 was investigated. METHODS: Serum 25(OH)D, 1,25(OH)2D and ACE2 protein were measured in 85 COVID-19 cases, divided into 5 groups, according to disease severity, from asymptomatic to severe and including a healthy control group. Expression levels of ACE2, VDR, TMPRSS2 and Furin mRNAs in PBMC were also measured. The relationship of the parameters within each group, the severity of the disease and the effect on the patients' fate were investigated. RESULTS: Statistically significant differences were found between the severity of COVID-19 and all study parameters, except for serum 25(OH)D. A strong negative correlation was found between serum ACE2 protein, 1,25(OH)2D, and ACE2 mRNA, and disease severity, length of hospital stay and death/survival rate. Vitamin D deficiency increased the death risk by 5.6-fold (95% CI 0.75-41.47), and the levels of 1,25(OH)2D lower than 1 ng/mL increased the risk of death by 3.8-fold (95% CI 1.07-13.30). CONCLUSION: This study suggests that vitamin D supplementation could be beneficial in the treatment and/or prevention of COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Furina/genética , Enzima de Conversão de Angiotensina 2/genética , Peptídeo Hidrolases , Vitamina D , Leucócitos Mononucleares/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Serina Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...